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AN INTRODUCTION TO ENDOREVERSIBLE THERMODYNAMICS

KARL HEINZ HOFFMANN

ABSTRACT. Reversible thermodynamic processes are convenient abstractions of real pro-
cesses, which are always irreversible. Approaching the reversible regime means to be-
come more and more quasistatic, letting behind processes which achieve any kind of finite
transformation rate for the quantities studied. On the other hand studying processes with
finite transformation rates means to deal with irreversibilities and in many cases these irre-
versibilities must be included in a realistic description of such processes. Endoreversible
thermodynamics is a non-equilibrium approach in this direction by viewing a system as
a network of internally reversible (endoreversible) subsystems exchanging energy in an
irreversible fashion. This material provides an introduction to the subject.

1. Introduction

Equilibrium thermodynamics compares real processes to reversible processes proceed-
ing without losses at an infinite slow speed. An example is the often used Carnot [1]
efficiency:

(1) ηC = 1− TL/TH .

It gives the fraction of the heat which at most can be converted to work in any engine using
heat from a hot reservoir at temperature TH and rejecting some of the heat to a reservoir
at lower temperature TL. Although the performance limits of reversible processes like the
Carnot efficiency provide upper bounds for real irreversible processes they may not be
good enough to be a useful guide in the improvement of real processes. Real heat engines,
for example, seldom attain more than a fraction of the reversible Carnot efficiency.

Engineers tried to close this discrepancy between real process and limiting reversible
process by improving their design, specific to certain devices or processes. But despite
all technological progress in engineering, the gap remains, and it has to remain due to the
irreversible nature of real processes.

Thus the principle question remains:
Under which conditions and how can realistic bounds for process vari-
ables of thermodynamic processes, which are performed in finite time, be
determined

and
What are the optimal process paths to achieve the optimal process values.

This challenge has eventually inspired scientists to conduct a wide spectrum of research
activities.
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In the late 50’s of the 20th century, the German H. Müser considered the power output
of solar cells under the condition of a finite, irreversible, radiative energy transfer [2] and
the Russians Novikov [3, 4] and Vukalovich [5] as well as the French Chambadal [6, 7]
investigate the effect of finite heat transfer on the power output of an otherwise reversible
power plant. They discovered that the efficiency at the maximum power point,

(2) η = 1−
√
TL/TH ,

is considerably lower than the corresponding Carnot efficiency (1). In 1975 Curzon and
Ahlborn [8] re-discovered the efficiency expression (2) and found it in remarkable agree-
ment with the performance data of real power plants.

Since then a number of non-equilibrium thermodynamic theories were developed, for
instance finite-time thermodynamics, which aims at capturing all effects due to processes
occurring in finite-time or with finite rates [9]. Another example is endoreversible ther-
modynamics where the term ‘endoreversible’ means internally reversible and goes back to
Rubin [10, 11]. The aim [12, 13] of all these investigations is to identify the main thermo-
dynamic features of the system in order to make a model as simple as possible. The idea
is to reduce the mathematical description and computational effort and yet to find more
realistic optima and bounds for the operation of a thermodynamical system.

The concept of ‘endoreversibility’ has proven to be a powerful tool for the construction
of models with the desired qualities. Endoreversible systems [10, 14] basically are com-
posed of internally reversible subsystems with (irreversible) interactions between them.
The losses due to the finite times or rates of processes are located in the interactions alone.
The hypothesis of endoreversibility simplifies the expenditure for the analysis essentially.
It has been successfully applied to a wide variety of thermodynamic systems and lead to
remarkable results [15].

An important question in the analysis of endoreversible systems is how to deal with the
time dependence of process variables and parameters, i.e. how the dynamics of a system
evolves during a process.

The simplest systems are those where all flows and intensities during a process are
constant though still finite. Such systems often allow an analytical solution for their per-
formance characteristics and for their optimal points of operation.

More complicated systems permit a switching between several quasi-static regimes. An
example for this category is the model of a heat engine which alternately connects to heat
reservoirs at respective high and low temperatures [8]. The switching parameters, here the
contact times, are usually externally controllable and can be optimized with respect to a
certain objective, such as the power output of the heat engine.

Finally, systems can be investigated which require to consider the full dynamics of a
process. In this case, the process evolves along a path which is undetermined, but may be
subject to some constraints and bounds such as initial and final conditions. Determining
performance limits for such systems leads to a path optimization problem. One has to find
that thermodynamic path which extremalizes a given performance measure. Take, for ex-
ample, the problem of optimizing the piston movement for an internal combustion Diesel
engine such that the power output is maximized. The only controllable variable of the sys-
tem is the volume of the cylinder which can be adjusted by moving the piston. Solving this
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FIGURE 1. Model of the endoreversible Novicov engine with finite heat
conduction K to the high temperature heat reservoir (left). TS-diagram
of a Carnot cycle with a temperature difference to the high temperature
heat reservoir (right).

optimization problem should give us the optimal piston movement, the resulting optimal
work and possibly some other process variables such as temperature and pressure.

This review is a combination of material from two articles published previously [15,
16], and gives an overview on endoreversible techniques and systems. For a more complete
description the reader should turn to these two articles.

2. Endoreversibility and endoreversible systems

2.1. Definition of the endoreversible subsystems. An endoreversible system consists of
a number of subsystems which interact with each other and with their surroundings. We
choose the subsystems so as to insure that each one undergoes only reversible processes.
All the dissipation or irreversibility occurs in the interactions between the subsystems or
the surroundings. An endoreversible system is thus defined by the properties of its subsys-
tems and of its interactions. We call processes of such systems endoreversible process.

If a subsystem is for instance a spatially uniform working fluid, than the requirement
that it undergoes only reversible processes means that it is always in internal thermody-
namic equilibrium. But subsystems can be also more aggregate objects, namely engines
(or more general energy transformation devices). If for instance such an engine takes in
heat at temperature TH and converts it into work and heat discharged at temperature TL,
then endoreversibility requires its efficiency η to be the Carnot efficiency ηC = 1−TL/TH.
This will become more apparent in our first example.

2.2. An introductory example. As a simple introductory example we consider the Novi-
cov engine [3, 4], a simplified version of the Curzon-Ahlborn engine treated later. The
Novicov engine is a continuously operating, reversible Carnot engine with the internal
temperatures TiH and TiL. It is in direct contact with the external low temperature heat
bath at TL and is coupled to an external high temperature heat bath at TH through a finite
heat conductance K (see Figure 1). The heat baths are both considered to be infinite such
that the in- and outflux of energy does not change their temperatures.
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The question is now how the irreversibility introduced by the finite heat conductance
influences the performance of the engine. Does it for instance have an effect on the effi-
ciency of the system?

We first note that the total heat flux through the system is limited, and thus the power
produced by the engine is limited as well. To characterize the performance of this endore-
versible system in more detail we want to determine the maximum power available and
the efficiency at the operating point of maximum power.

Due to the finite heat conductance heat is only transported to the Carnot engine, if its
high temperature TiH is lower than the bath temperature TH. The heat flux qH transported
from the heat bath to the engine is assumed to be proportional to the temperature difference
(Newtonian heat conduction)

(3) qH = K(TH − TiH).

At the low temperature side the heat can be discharged to the heat bath at TL without
any resistance. Thus this interaction between heat bath and engine is characterized not by
a transfer law but by the requirement that the lower temperature TiL of the Carnot engine
is the same as the bath temperature

(4) TL = TiL .

We note that the Carnot engine is characterized by three energy fluxes and two temper-
atures: qH enters the engine at temperature TiH, the heat flux to the low temperature heat
bath qL leaves the engine at temperature TiL, and P is the power delivered by the engine.
The heat baths are described by (TH, qH) and (TL, qL) respectively, and the heat conduc-
tion contains the parameter K. All the variables (energy fluxes, temperatures, and K) are
related by the interaction between the heat bath and the engine and by the constraints com-
ing from the endoreversibility of the Carnot engine. As the engine operates continuously
in a steady state, all the energy fluxes have to balance

(5) 0 = qH − qL − P.
In addition, as the engine operates reversibly the entropy fluxes to and from the engine
have to cancel

(6) 0 =
qH
TiH
− qL
TiL

.

Solving now for P we obtain

(7) P = qH

(
1− TiL

TiH

)
= K(TH − TiH)

(
1− TL

TiH

)
.

For given temperatures of the heat baths and given K, the flow of heat through the engine
and the power produced by the inner Carnot engine will depend only on the operating
temperatures of the Carnot engine. As TH and TL are fixed, the only control to influence
the overall performance of the endoreversible engine is TiH, and we find the power P as
a function of TiH only. Equation (7) alone is thus characterizing the entire endoreversible
Novicov engine with Newtonian heat conduction.

The maximum power is determined by differentiation with respect to TiH

(8) 0 =
dP

dTiH
= K

(
THTL

T 2
iH

− 1
)
,



AN INTRODUCTION TO ENDOREVERSIBLE THERMODYNAMICS 5

from which we find TiH =
√
THTL. Operating with this temperature the maximum power

is

(9) Pmax = K
(√

TH −
√
TL

)2

and the efficiency in terms of the bath temperatures is

(10) η(Pmax) = 1− TiL

TiH
= 1−

√
TL

TH
.

The reader should note the remarkable fact that this efficiency does not depend on the
size of the heat conductance K. Also note that this efficiency is not a bound for heat engines
operating not at the maximum power point.

This simple example has shown how with a relatively modest effort new and interesting
results can be obtained for the performance of heat engines operating out of equilibrium.

3. Endoreversible systems – a formal description

We now generalize the ideas presented above and view an endoreversible system as
a network of reversible subsystems exchanging energy. Setting up the mathematical de-
scription of an endoreversible system is quite easy, usually a number of balance equations
and transport equations have to be combined. For an endoreversible system energy is not
the only exchanged quantity, in each interaction between subsystems it is accompanied by
another quantity, be it for instance entropy, momentum or a particle flux.

The basic building block of endoreversible systems is a thermal equilibrium system. It
is described by its state variables, but as usual for equilibrium systems, one has some free-
dom in the choice of these state variables. In the following, Xα

i will denote the extensive
thermodynamic variables of subsystem i, for instance the volume Vi, or particle number
Ni, all of which are counted by α. The entropy Si of subsystem i is a well defined state
variable due to endoreversibility and belongs to the set of extensive variables. Thus the
state of the subsystem is uniquely described by the set of its extensities {Xα

i }. We then
have

(11) Ei = Ei(Xα
i ).

Note that (11) defines the properties of subsystem i, i.e. specifying Ei as a function of
the Xα

i determines what the thermal behavior of that subsystem is. The energy E is not
confined to be the internal energy, it can in addition include the translational kinetic energy,
the rotational kinetic energy, or the potential energy in one or more external fields.

Due to endoreversibility all the standard equilibrium relations hold within a subsystem.
We obtain the respective conjugate intensive variables Y αi from (11):

(12) Y αi =
∂Ei
∂Xα

i

.

The Gibbs equation becomes

(13) dEi =
∑
α

Y αi dX
α
i ,

and in each subsystem the extensive and the intensive variables are related via the equa-
tions of state (12).
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Due to the Gibbs equation each influx of an extensity Jαi = Ẋα
i into the system carries

an accompanying influx of energy Iαi [17]:

(14) Iαi = Y αi J
α
i .

For instance any heat flux q is carried by an entropy flux q/T , or an angular momentum
flux M (torque) carries an energy flux ωM , where ω is the angular velocity.

Each reversible subsystem i is characterized by a number of contact points (or contacts),
through which the subsystem receives or discards energy. Through each contact the energy
is transported by an extensity (a carrier) Xα

i , for instance entropy or volume. The contacts
for the same extensity in one subsystem are numbered by r.

Each contact has three (time-dependent) functions assigned to it (Y α,ri , Jα,ri , Iα,ri ).
Here Iα,ri is the energy flux into the system, Jα,ri is the associated flux of the carrier Xα

i

and Y α,ri is the corresponding thermodynamic intensity for that contact. Endoreversibility
guarantees that the energy and extensity influx at each contact are always related by (14).

In the following it is helpful to distinguish between two different types of subsystems,
reservoirs and engines.

A reservoir is a thermodynamic system in equilibrium, characterized by either
a) given intensities Y αi . This is the case for infinite reservoirs where the influx of an

extensity does not change the value of the intensity. In the introductory example
both heat baths were of this type.

b) its extensitiesXα
i and its energy functionEi(Xα

i ). Then the intensities are known
Y αi = ∂Ei/∂X

α
i , and due to its internal equilibrium they are uniform throughout

the subsystem and thus the contact intensities Y α,1i = Y α,2i = · · · ≡ Y αi are equal
for all r. From the balance equations for the extensities and the energy one finds

(15) Ẋα
i =

∑
r

Jα,ri and Ėi =
∑
α,r

Iα,ri =
∑
α

Y αi
∑
r

Jα,ri ,

where we have assumed that the extensities are neither destroyed or produced
within a subsystem.

An engine is a reversible subsystem, for which the contact variables are related by
special balance requirements for the extensities and the energy. For an engine operating in
a steady state one requires

(16) 0 =
∑
r

Jα,ri and 0 =
∑
α,r

Iα,ri =
∑
α,r

Y α,ri Jα,ri ,

while for cyclic engines with cycle time ttot

(17) 0 =
∫ ttot

0

dt
∑
r

Jα,ri and 0 =
∫ ttot

0

dt
∑
α,r

Iα,ri =
∫ ttot

0

dt
∑
α,r

Y α,ri Jα,ri

holds. Note that for the endoreversible engine one does not need to know the equations of
state for its working fluid. In the introductory example equations (5) and (6) correspond to
equations (16), respectively.

The interactions describe, how the contacts of the subsystems exchange energy. The
contact points are connected by the interactions such that each contact belongs to one
specific interaction. An interaction Ω is characterized by the set of contacts which belong
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to it, and by the specific extensity Xα, through which the contacts exchange energy. If
the interaction is reversible, only contacts for the exchanged extensity are needed. If the
interaction is irreversible, entropy is produced, and then at least one additional contact is
needed in which the produced entropy can be deposited.

Some of the extensities (like angular momentum) and energy are conserved quantities
by nature, while others (like the particle number of chemical species) are not. In a (com-
plete) interaction all the conserved quantities must balance to zero. We shall see later
however, that often it suffices to consider only partial interactions. A specific interaction
Ω can be either reversible or irreversible, and can be either of the two following cases:

a) All the contact intensities ν, µ ∈ Ω obey Yν = Yµ. In the above discussed Novi-
cov engine the interaction between the engine and the lower heat bath is of this
type.

b) The interaction is defined by a transport law which gives either the flux of the
extensity

(18) Jν = Jν({Yω}, {Xα
i }, zm)

or the corresponding flux of the energy

(19) Iν = Iν({Yω}, {Xα
i }, zm)

at each of the involved contacts as functions of the intensities, the extensities (for
reservoirs) and of additional external parameters zm, which are counted by m.
These parameters are mentioned here explicitly, as they are sometimes used as
’controls’ to adjust the fluxes in optimizing the performance of endoreversible
systems.

In the above discussed Novicov engine the interaction of the engine to the upper heat
bath is of type b. Here two entropy contacts are coupled such that the heat flux (3) is a
function of the two bath temperatures, and K is an external parameter, one of the zm. The
entropy fluxes do not balance as the transport is irreversible.

In general these interactions can be much more complicated, and the form of the heat
transfer law will significantly influence the behavior of an endoreversible system. Other
heat transfer laws than the so-called Newton heat transfer law discussed above are the
Fourier and radiative heat transfer.

For the Fourier heat transfer law the heat flux q is proportional to the difference of the
inverse temperatures,

(20) q = K(1/T2 − 1/T1)

whereK is an Onsager coefficient. This form of heat transfer is often found in conjunction
with linear irreversible thermodynamics, as there the difference of the inverse temperatures
is the force corresponding to the heat flux. In the case of a Novikov-engine such a law will
lead to an efficiency at maximum power of η(Pmax) = ηC/2.

Radiative heat transfer is typically described by the Stefan-Boltzmann law for black-
body radiation, and the heat flux between two radiating bodies at temperature T1 and T2 is
given by

(21) q = K1T
4
1 −K2T

4
2 .
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The coefficients K are proportional to the Stefan-Boltzmann constant, the emittances of
the two radiating bodies, and geometry factors. Solar collectors are typical applications
where radiative heat transfer is involved as an interaction.

3.1. The characterization of endoreversible systems. Collecting the different elements
introduced above, we find that an endoreversible system is described by its contact vari-
ables and the extensities of the reservoirs. If the system does not contain finite capacity
reservoirs, then the extensities of the reservoirs can be excluded from the description.
Usually some of the contact variables and extensities will be given, for instance the tem-
peratures of some heat bath, while others remain undetermined. They are however not
completely free, as all of them are related by constraints due to

• the Gibbs relation at each contact
• the balance equations in the reservoirs
• the balance equations in the engines
• the interactions.

Thus an endoreversible system is completely characterized by this set of algebraic and
ordinary differential equations relating its contact variables and reservoir extensities.

3.2. The performance of endoreversible systems. We now turn to the analysis of en-
doreversible systems. A large number of different systems have been analyzed in the
literature, using different schemes and levels of sophistication. The level of mathematical
sophistication needed depends crucially on the question, whether time-dependent contact
variables and subsystem extensities are present or not. If they are not present the level
of mathematical sophistication reduces considerable. Time-dependent endoreversible sys-
tems on the other hand require often the use of control theory or of the calculus of variation
for the discussion of their performance extremes [18, 19].

In steady state operation all contact variables are time-independent, for instance reser-
voirs are characterized by stationary intensities. Then all the contact variables become sim-
ple variables (For cyclic operation the situation is a little more complicated, see [15, 16]).
In a geometric sense the whole endoreversible system is thus characterized by a hyper-
surface of all possible operating points in the multidimensional space spanned by all the
contact variables.

Sometimes one is not only interested in discussing the performance of an endoreversible
system as a function of its thermodynamic (contact) variables, but also as a function of
certain external parameters zm. These can be for instance the heat conduction areas in
heat exchangers. Due to economic constraints the total heat exchanger inventory might be
given, and the question might be how the performance is changed by different allocations.
In such a case the contact variables are supplemented by these parameters to form a higher
dimensional space, and the added constraints together with the thermodynamic constraints
lead to a hyper-surface of possible operating and design points.

As the characterization of an endoreversible system by its hyper-surface is quite com-
plicated the usual next step in the analysis of an endoreversible system is the study of
certain performance measures [20], which are defined on the contact variables (and the ex-
ternal parameters) and thus on each (operating) point on the hyper-surface. In a way such
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FIGURE 2. (left:) Curzon–Ahlborn model of an endoreversible heat en-
gine with finite heat transfer to and from the heat reservoirs.
(right:) Power vs. efficiency plot for an endoreversible Curzon–Ahlborn
engine with finite heat transfer.

a performance measure can be considered as a projection of the complicated hyper-surface
onto one dimension.

Sometimes also two-dimensional projections are considered, where one performance
measure is discussed as a function of another. Examples for performance characteristics
of this sort are the power–efficiency curve [21] and the COP (coefficient of performance)
vs. cooling load curve.

Often the extreme values which performance measures can achieve are used in the
characterization of endoreversible systems. In our introductory example the power as one
performance measure was maximized, and the efficiency of the engine at that operating
point was determined.

Other measures are efficiency, the COP for refrigerating devices, and in particular the
entropy production rate

(22) σ =
∑
i,r

JS,ri .

The concept of entropy minimization has been used extensively. In particular, Bejan
has published numerous articles and books on the topic (see [22, 23], for example).

4. A cyclic operating heat engine

In this section we will bring the formal description of endoreversible thermodynamics
to life by applying it to the Curzon–Ahlborn engine [8], see Figure 2. It consists of two
heat baths at constant temperatures TH and TL and a reversible Carnot engine operating
between the temperatures TiH and TiL.

We here consider a cyclicly operating engine. Delivering the work W per cycle, the
engine absorbs the heat QH from the hot temperature reservoir during the time tH and
rejects the heat QL to the low temperature reservoir during the time tL:

QH = KHtH(TH − TiH)(23)
QL = KLtL(TiL − TL)(24)
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where KH and KL are the respective thermal conductances. The time spent in the
isentropic branches of the Carnot cycle is considered to be negligible compared to the
isotherms such that the total cycle time is the sum of the times spent in the isothermal
branches: ttot = tH + tL.

The goal is now to determine the maximum work W per cycle (which also maximizes
the maximum average power output as the total cycle time is fixed) and the efficiency at
that operating point. We find

(25) W = CTHη
ηC − η
1− η

where we introduced

(26) η = 1− TiL/TiH C =
(

1
κHtH

+
1

κLtL

)−1

.

A plot of the power versus efficiency characteristics (25) is depicted in Figure 2.
One can obtain the maximum work point by setting both (∂W/∂η)tH and (∂W/∂tH)η

equal to zero. The condition (∂W/∂tH)η = 0 gives a relation between the branch times
and the conductances:

(27) tH/tL =
√
KL/KH .

The condition (∂W/∂η)th = 0 leads to the Curzon–Ahlborn efficiency

(28) η(Pmax) = ηCA = 1−
√
TL/TH

at maximum work, which is obtained by inserting (28) and (27) into (25)

(29) Wmax = ttot
KHKL(√

KH +
√
KL

)2 (√TH −
√
TL

)2

.

Note that Wmax still depends on the conductances KH and KL.
The Curzon–Ahlborn efficiency is much closer to observed efficiencies than the cor-

responding Carnot efficiencies [8, 24]. Nonetheless a careful analysis of the dissipative
processes as well as of the optimization goals in real engines remain important [25].

Heat engines with heat leaks. We conclude this section by mentioning refinements
of these models by introducing an internal heat bypass or heat leak. Such systems were
first analyzed by Bejan [26] and later by Gordon and Huleihil [25]; they showed that the
model with additional heat bypass gives an even more realistic behavior especially for slow
operation. Figure 3 shows an extended Curzon–Ahlborn model with heat leak. Then if the
endoreversible engine operates fast, the internal temperature difference TiH−TiL becomes
small and the efficiency of the endoreversible engine degrades. If on the other hand the
engine operates slow, heat is lost through the heat leak causing a decrease in efficiency.
Between this extremes, there are operation modes with internal temperatures TiH and TiL

for which either the efficiency or the power output of the engine is maximized. Later
work [27] showed that a Novikov engine with heat leak can even quantitatively model real
combustion engines for properly chosen parameters.
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5. Mathematical Tools for optimal process paths

Determining the optimal path for a thermodynamic process requires tools more elabo-
rate than calculus. Two of these tools, the Euler-Lagrange formalism and optimal control
theory, have been used widely. Here we concentrate on optimal control theory.

5.1. Optimal control theory. Optimal Control Theory evolved in the middle of the 20th
century. It considers a dynamic system whose state is described by its vector of state
variables x(t) = (x1(t), . . . , xn(t)), which can change in time according to

(30) ẋ = f(x, u, t).

Here u(t) = (u1(t), . . . , ur(t)) is the vector of control variables. The set of control vari-
ables includes both the controllable state variables and external controls. Such an external
control could for instance be a variable which switches on or off the coupling to a heat
bath. The path x(t) of the system in state space can be externally influenced by the choice
of the values of the control variables out of the set of allowed controls U and is fully
determined by an initial state x0 = x(0) and the controls u(t).

The problem of optimal control is then to find the controls for which a given functional
J becomes extremal, i.e.

(31) J =
∫ τ

0

f0(x, u, t)dt→ max
u(t)

.

First one has to form the Hamiltonian for this problem introducing the time-dependent
adjoint (or co-state) variables λi, one for each state variable:

(32) H = f0 +
n∑
i=1

λifi,
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where fi are the components of the vector f in (30). The optimal controls u∗(x, λ, t)
are found by maximizing the Hamiltonian for fixed x, λ, and t (Pontryagin’s maximum
principle):

(33) H(x, λ, u∗, t) ≥ H(x, λ, u, t) ∀u ∈ U.
Note that the resulting controls can be discontinuous. The optimal controls are then in-
serted back into the canonical equations of motion. This results in a set of closed coupled
differential equations with boundary conditions for x:

λ̇i = − ∂

∂xi
H(x, λ, u, t)

∣∣∣∣
u=u∗(x,λ,t)

(34)

ẋi =
∂

∂λi
H(x, λ, u, t)

∣∣∣∣
u=u∗(x,λ,t)

.(35)

If the final value of a state variable is not given, the corresponding adjoint variable is
required to have the final value equal to zero (transversality condition).

Depending on the problem the optimal path may consist of several arcs which need to
be connected in the so-called switching problem. Across the switchings controls can have
jumps. Sometimes the solution consists of an arc which represents an interior optimum
which is bracketed by arcs representing boundary solutions of the controls or even jumps
in state variables. Such solutions have been dubbed ‘turnpikes’ [28].

5.2. Path optimization of a Novikov engine. A simple example for an endoreversible
system is the Novikov engine [3] introduced above. The cycle is characterized by two
isotherms with temperatures TiH and TiL and two isentrops with entropies S1 and S2.

We now turn this model into a dynamical one: What is the optimal cycle process if
we drop the assumption that the working fluid undergoes a Carnot cycle? To be more
specific we still assume that the working fluid is coupled to the low temperature bath
with TL without any resistance. Thus TiL = TL and the system undergoes an isothermal
transformation from state 2 with entropy S2 to state 1 with entropy S1 (Fig. 4(a)). The
working fluid is still coupled to the high temperature bath with TH through the finite heat
conductance K i.e. qH = K(TH − TiH). The time dependencies of T (t) and S(t) are in
general unknown (Fig. 4(b)).

The objective now is to determine that cycle which maximizes the work output in a
given cycle time τ , i.e. the power. The strategy is to determine the optimal path of the
upper part of the cycle for every choice of the parameters S1 and S2 and then to perform a
simple parameter optimization with respect to S1 and S2.

To set up the control problem we choose the entropy of the working fluid S as the state
variable which evolves according to

(36) Ṡ =
K(TH − T )

T

with the boundary conditions S(0) = S1 and S(τ) = S2.
The temperature of the working fluid is taken as the control variable, which can be

adjusted by appropriate volume changes.
As the heat transport to the low temperature bath is unlimited we assume that it happens

instantaneously. Thus the full cycle time τ can be assigned to the branch which is subject



AN INTRODUCTION TO ENDOREVERSIBLE THERMODYNAMICS 13

H THT

S

iH

S S

T

1 2
S

S S

T

1 2

1 2

T(t) ?

L L

W W

a) b)
T T

T

FIGURE 4. (a) The T-S diagram of a Novikov engine with a Carnot
cycle taken as the reversible process. (b) In general the optimal path
from state 1 to state 2 is unknown and can be found using control theory.

to optimization. The work output, i.e. the area enclosed by the T-S curve, is then given by

(37) W =
∫ τ

0

T Ṡdt− TL(S2 − S1) =
∫ τ

0

K(TH − T ) dt− TL∆S

with ∆S = S2 − S1. As TL∆S is a constant it plays no role for the path optimization, i.e.
it is sufficient to maximize the integral.

Thus the Hamiltonian of the problem is

(38) H = K(TH − T ) + λS
K(TH − T )

T

and the canonical equation is written as

(39) λ̇S = −∂H
∂S

= 0.

The optimal temperature path (control) is found by maximizing the Hamiltonian:

(40)
∂H

∂T
= −K − λSKTH

T 2
= 0 ⇒ T =

√
−λSTH.

This result has to be inserted into the set of differential equations (36), (39). λS turns out
to be a constant. Its size is chosen such that the boundary conditions for the entropy are
fulfilled. We find

(41) S(t) =
S2 − S1

τ
t+ S1, T (t) =

KτTH

∆S +Kτ
,

where the last expression is obtained from (36).
The temperature is a constant not equal to TL. In order to close the cycle with the

low temperature branch we need two instantaneous adiabatic jumps which connect the
two isothermal branches. We see that the optimal cycle which was determined by control
theory turns out to be the Carnot cycle with two adiabats and two isotherms.
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There are still two free parameters S1 and S2 which we need to adjust to maximize the
power output further. We insert the expression (41) for the optimal temperature into (37):

(42) W =
TH

(Kτ)−1 + ∆S−1
− TL∆S,

and see that the work output only depends on ∆S. So we set the derivative with respect
to ∆S zero and find the optimal value in terms of the given engine parameters TH, TL,K
and τ :

(43) ∆Sopt = Kτ

(√
TH

TL
− 1

)
.

Inserting the optimal entropy difference into (41) finally yields

(44) T opt =
√
THTL,

a result which leads to the well-known Curzon-Ahlborn efficiency.

6. Optimal Paths for Internal Combustion Engines

Finite-time thermodynamics started out as a reaction to the oil crisis in the early seven-
ties. So it was very natural that after the necessary tools had become available the atten-
tion focused on the application of finite-time thermodynamics to combustion engines. Of
course the idea was not to repeat nearly 100 years of careful engineering and optimization,
the idea was to abstract the engines enough to make them treatable and yet to include at
the same time all major loss terms [29] so that the results of the analysis would be useful in
guiding which loss terms could be most easily reduced. The focus was not on optimizing
the technical realization of the engines but on optimizing the thermodynamic process itself
and on finding its inherent limits when performed in a finite time. The path optimization
shows which loss term can be most easily reduced, and how close real engines approach
these performance bounds. Dynamic endoreversible models of internal combustion en-
gines, especially Diesel and Otto engines, have been first investigated by Mozurkevich
and Berry [30], by Hoffmann, Watowich and Berry [31], and later extended by Blaudeck
and Burzler [32, 33].

6.1. The Otto engine. Mozurkevich and Berry [30] investigated an internal combustion
engine based on an Otto cycle. Their objective was to find the optimal piston path for
which the output of work is maximized for a fixed cycle time and a given amount of fuel.
The model is based on a four stroke Otto cycle with several sources of irreversibility such
as piston friction and heat leak. The models employed to describe the losses were chosen
such that they adequately model the qualitative behavior and the total magnitude of these
losses.

Losses due to friction are approximated by a friction force linear in the piston velocity
F = αv corresponding to a well-lubricated system. The value of α during the power stroke
is assumed to be twice as large as during the other strokes due to the greater pressure. The
pressure drop due to the viscosity of the gas as it flows through the intake valve is also
proportional to the velocity and was thus included in the respective friction term. The
pressure drop during the exhaust stroke was neglected.
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Heat conduction through the cylinder walls constitutes a major loss term. The thermal
conductance through the cylinder wall is taken to be proportional to the surface area inside
the cylinder and the difference between the temperature of the working fluid T and that of
the cylinder walls Tex, which is assumed to be constant. For heat conduction coefficient κ
and cylinder diameter b the rate of heat leak q(x, t) at piston position x is given by:

(45) q(x, t) = κπb(0.5b+ x)(T − Tex).

Mozurkevich and Berry [30] neglected the heat leak during the non-power strokes since
the temperature difference between the working fluid and the cylinder wall is much lower
during the non-power strokes than during the power stroke.

To find the optimal cycle for a given total cycle time one has to calculate the optimal
path for each stroke as a function of time needed for this stroke. Then one has to deter-
mine the optimal allocation of the time to each stroke using the work output as objective
function.

The optimal path on each stroke is determined by optimal control theory.
Mozurkevich and Berry obtained a number of highly interesting results. The increase

of effectiveness is calculated for several sets of parameters and different values for the
constraints of piston acceleration. It turns out that compared to a conventionally operated
piston the magnitude of achievable increase of effectiveness due to path optimization is
about 10%. Especially for those parameter sets with large heat leaks the optimal movement
requires a fast expansion to avoid heat losses during the expansion. For details see ref.
[30].

6.2. The Diesel engine. The main difference of the Diesel combustion engine to the Otto
cycle is due to the finite combustion rate of the fuel which progresses also during the
power stroke. This leads to a higher in principle efficiency of the Diesel engine. So it is
very interesting to analyze a Diesel engine model to determine performance limits for this
type of process. Hoffmann, Watowich, and Berry [31] performed such an analysis. The
finite rate combustion process is approximated by the following time-dependent function,
which describes the extent of the reaction

(46) ξ(t) = F + (1− F )(1− exp(−t/tb)).

The explosion fraction F is the part of fuel consumed in an initial instantaneous burn
and tb gives the time during which most of the combustion occurs. This yields a heating
function

(47) f(t) = Qcξ̇(t),

where Qc is the heat of combustion per molar fuel-air mixture charge.
The mole number N and the heat capacity C are also assumed to be influenced by the

extent of the combustion reaction. Heat losses and frictional losses were modelled as in
the Otto engine. The temperature and piston position are state variables and subject to the
constraints

Ṫ =
f(t)−NRTv/x− q − ξ̇[C(Nf −Ni) +N(Cf − Ci)]

NC
,(48)

ẋ = v.(49)
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FIGURE 5. Optimal and conventional piston path of the compression
and power strokes in a Diesel engine. Note the initial stand-still of the
piston during the power stroke (left). Temperature of the working fluid
for optimal and conventional path (right).

These equations lead to an optimal control problem which has to be solved numerically.
The optimal piston motion showed a very surprising result: The piston should not move at
all for the first part of the power stroke. This behavior seems highly wasteful, as it increases
the frictional losses due to the higher velocity needed in the remaining time for the power
stroke. However it turned out that due to the piston remaining fixed the temperature of
the working fluid can increase higher this way. This in turn means that the available heat
energy of the fuel is provided to the system with higher exergy or availability content. This
shows eventually up in a higher work and power output. Again the engine efficiency was
about 10% higher than for a conventionally operated piston. Later Burzler, Blaudeck and
Hoffmann [33] moved the model even closer to real engines by investigating different heat
loss models.

As an alternative to control theory a Monte-Carlo method can be used [32] as effec-
tively. The results for the optimal operation of the compression and power stroke of a
Diesel engine are shown in Fig. 5, where both strokes were optimized together using the
Monte-Carlo method. Again the optimal power stroke begins with a short delay, where
the piston remains at its extremal position. So this interesting behavior, which increases
losses due to heat leak and friction but increases the temperature of the working fluid and
the maximum availability of the system, remains unchanged.

7. Conclusion

In this review we considered endoreversible systems ranging from general thermody-
namic cycles with different model assumptions to semi-realistic combustion engine mod-
els. Various examples showed how different techniques are applied to determine per-
formance optima and the corresponding optimal process path for such systems. These
investigations show how a specific thermodynamic system is optimally driven, how model
assumptions influence the optimal path, and provide guidelines to improve real thermody-
namic processes.
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Endoreversible thermodynamics in our view is the successful attempt to include irre-
versibilities and dissipative processes into the description of thermodynamic processes,
while at the same time preserving the advantages of classical reversible thermodynamics.
The central idea is to think of a system as a network of subsystems – each undergoing
only reversible processes – which exchange energy. All irreversibilities occur only in the
interactions between the subsystems. Treating systems in this way one gets one step closer
to a realistic description of real dissipative processes.

In this review we presented the general framework for the endoreversible description
of thermodynamic systems undergoing irreversible processes. Depending on the desired
accuracy of the description a system can be separated into a larger or smaller number of
subsystems. This way the irreversibilities of the energy exchange between the parts of the
system can be taken into account. The discussion focused equally on obtaining a proper
mathematical theory and on the characterization of the systems performance.

Our aim was not so much to elaborate a large number of different energy transformation
devices, our aim was a presentation from a systematic point of view. As a good starting
point for further reading of this subject and related topics we recommend references [15,
16, 34–36].
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